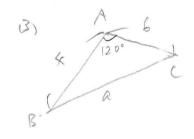

zukeitos

△ABC において、次の値を求めよ。

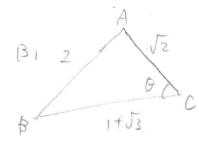
- (1) $a = 2\sqrt{3}$, $\angle A = 120^{\circ}$ のとき, 外接円の半径 R
- (2) $a = \sqrt{2}$, $\angle A = 45^{\circ}$, $\angle B = 60^{\circ}$ のとき, b の長さ
- (3) b = 6, c = 4, $\angle A = 120^{\circ}$ のとき, a の長さ
- (4) $a = 1 + \sqrt{3}, b = \sqrt{2}, c = 2$ のとき, $\angle C$ の大きさ

$$\frac{\sqrt{2}}{\sqrt{2}} = \frac{b}{\sqrt{2}}$$


$$\frac{\sqrt{2}}{\sqrt{2}} = \frac{b}{\sqrt{2}}$$

$$\frac{\sqrt{2}}{\sqrt{2}} = \frac{b}{\sqrt{2}}$$

$$\frac{\sqrt{2}}{\sqrt{2}} = \frac{b}{\sqrt{2}}$$


$$\frac{\sqrt{2}}{\sqrt{2}} = \frac{\sqrt{2}}{\sqrt{2}}$$

$$\frac{\sqrt{2}}{$$

会議定理が

$$\alpha^2 = 16 + 36 - 2.4.6 a 2 1 2 0$$

 $= 52 + 24$
 $= 76$ $\alpha = 2\sqrt{19}$

