

O を始点とする 2 つのベクトルを $\overrightarrow{OA} = \overrightarrow{a}, \overrightarrow{OB} = \overrightarrow{b}$ とする。 \overrightarrow{OA} と \overrightarrow{OB} のなす角が 60° で $|\overrightarrow{a}| = 3, |\overrightarrow{b}| = 2$ とする。

- (1) \overrightarrow{a} と \overrightarrow{b} の内積 \overrightarrow{a} · \overrightarrow{b} を求めよ。
- (2) AB の大きさを求めよ。
- (3) \overrightarrow{AB} の中点を M とするとき, \overrightarrow{OM} の大きさを求めよ。
- (4) Oから直線 AB におりした垂線の足を H とするとき AH: HB を求めよ。

$$(\vec{a}\vec{n})^2 = \frac{1}{4}(\vec{a})^2 + 2\vec{a}\vec{b} + \vec{b}\vec{b}$$

 $= \frac{1}{4}(9+6+4)$
 $= \frac{19}{4}$
 $= \frac{19}{4}$

(4)
$$\frac{1}{3} + \frac{1}{1} + \frac{1}{2} = \frac{1}{3} + \frac{1}{1} - \frac{1}{3} = \frac{1}{3} + \frac{1}{3} = \frac{1}{3} + \frac{1}{3} = \frac{1}{3} =$$

