



曲線  $C: y = x^3 - 2x^2 + x$  と直線 y = mx の交点のうち、原点 O と異なる点を A, B とし、3 点 O, A, B はこの順に等間隔に並んでいるものとする。

- (1) mの値を求めよ。
- (2) 曲線 C と線分 AB で囲まれる部分の面積を求めよ。

(1) 
$$\frac{9}{3} = 3x^2 - 4x + 1$$
  
=  $(x-1)(3x-1)$  が 2<sup>n</sup> えつの根形的は左下のほとなる。

〔東北大〕

$$\frac{1}{3} - 2x^{2} + x = mx$$

$$\frac{1}{3} - 2x^{2} + (1 - m)^{2} = 0$$

$$\frac{1}{3} - 2x^{2} + (1 - m)^{2} = 0$$

$$\frac{1}{3} - 2x^{2} + (1 - m)^{2} = 0$$

$$\frac{1}{3} - 2x^{2} + x = mx$$

$$\frac{1}{3} - 2x^{2} + (1 - m)^{2} = 0$$

$$\frac{1}{3} - 2x^{2} + (1 - m)^{2} = 0$$

$$\frac{1}{3} - 2x^{2} + (1 - m)^{2} = 0$$

$$\frac{1}{3} - 2x^{2} + (1 - m)^{2} = 0$$

$$\frac{1}{3} - 2x^{2} + (1 - m)^{2} = 0$$

$$\frac{1}{3} - 2x^{2} + (1 - m)^{2} = 0$$

$$\frac{1}{3} - 2x^{2} + (1 - m)^{2} = 0$$

$$\frac{1}{3} - 2x^{2} + (1 - m)^{2} = 0$$

$$\frac{1}{3} - 2x^{2} + (1 - m)^{2} = 0$$

$$\frac{1}{3} - 2x^{2} + (1 - m)^{2} = 0$$

$$\frac{1}{3} - 2x^{2} + (1 - m)^{2} = 0$$

$$\frac{1}{3} - 2x^{2} + (1 - m)^{2} = 0$$

$$\frac{1}{3} - 2x^{2} + (1 - m)^{2} = 0$$

$$\frac{1}{3} - 2x^{2} + (1 - m)^{2} = 0$$

$$\frac{1}{3} - 2x^{2} + (1 - m)^{2} = 0$$

$$\frac{1}{3} - 2x^{2} + (1 - m)^{2} = 0$$

$$\frac{1}{3} - 2x^{2} + (1 - m)^{2} = 0$$

$$\frac{1}{3} - 2x^{2} + (1 - m)^{2} = 0$$

$$\frac{1}{3} - 2x^{2} + (1 - m)^{2} = 0$$

$$\frac{1}{3} - 2x^{2} + (1 - m)^{2} = 0$$

$$\frac{1}{3} - 2x^{2} + (1 - m)^{2} = 0$$

$$\frac{1}{3} - 2x^{2} + (1 - m)^{2} = 0$$

$$\frac{1}{3} - 2x^{2} + (1 - m)^{2} = 0$$

$$\frac{1}{3} - 2x^{2} + (1 - m)^{2} = 0$$

$$\frac{1}{3} - 2x^{2} + (1 - m)^{2} = 0$$

$$\frac{1}{3} - 2x^{2} + (1 - m)^{2} = 0$$

$$\frac{1}{3} - 2x^{2} + (1 - m)^{2} = 0$$

$$\frac{1}{3} - 2x^{2} + (1 - m)^{2} = 0$$

$$\frac{1}{3} - 2x^{2} + (1 - m)^{2} = 0$$

$$\frac{1}{3} - 2x^{2} + (1 - m)^{2} = 0$$

$$\frac{1}{3} - 2x^{2} + (1 - m)^{2} = 0$$

$$\frac{1}{3} - 2x^{2} + (1 - m)^{2} = 0$$

$$\frac{1}{3} - 2x^{2} + (1 - m)^{2} = 0$$

$$\frac{1}{3} - 2x^{2} + (1 - m)^{2} = 0$$

$$\frac{1}{3} - 2x^{2} + (1 - m)^{2} = 0$$

$$\frac{1}{3} - 2x^{2} + (1 - m)^{2} = 0$$

$$\frac{1}{3} - 2x^{2} + (1 - m)^{2} = 0$$

$$\frac{1}{3} - 2x^{2} + (1 - m)^{2} = 0$$

$$\frac{1}{3} - 2x^{2} + (1 - m)^{2} = 0$$

$$\frac{1}{3} - 2x^{2} + (1 - m)^{2} = 0$$

$$\frac{1}{3$$

の、のかり 
$$\frac{\beta}{2}$$
 +  $\beta$  = 2  $\frac{3}{2}$   $\beta$  = 2  $\beta$  =  $\frac{4}{3}$   $\beta$  =  $\frac{2}{3}$  とがり  
A の 座標、 B の 座標・10 で 4 で h A ( $\frac{3}{3}$ ,  $\frac{2}{27}$ ) , B ( $\frac{4}{3}$ ,  $\frac{4}{29}$ ) .  $\frac{2}{27}$  =  $\frac{2}{3}$  m  $\frac{2}{20}$   $\frac{2}{3}$  m  $\frac{2}{3}$   $\frac{2}{3}$  m  $\frac{2}{$ 

(2) 
$$\int_{\frac{3}{3}}^{\frac{4}{3}} \left( \frac{1}{9} x - x^{3} + 2x^{2} - x \right) dx = \int_{\frac{3}{3}}^{\frac{4}{3}} \left( -x^{3} + 2x^{2} - \frac{9}{9} x \right) dx$$

$$= \left[ -\frac{1}{4} x^{4} + \frac{1}{3} x^{3} - \frac{9}{9} x^{2} \right]_{\frac{3}{3}}^{\frac{4}{3}}$$

$$= 0 - \left( -\frac{4}{81} \right)$$

$$= \frac{4}{81}$$



数樂 http://www.mathtext.info/