(1) $z^3 = 8i$ を満たす複素数 z を求めなさい。

058く2元

(2) $z^3 = 27i$ を満たす複素数 z を求めなさい。

11)
$$Z = r(\cos\theta + i\sin\theta) \geq h(c) = r > 0.050 < 2\pi \geq t^{3}$$
 $r^{3}(\cos\theta + i\sin\theta)^{3} = 8i$
 $r^{3}(\cos\theta + i\sin\theta)^{3} = 8(\cos\frac{\pi}{2} + i\sin\frac{\pi}{2})$
 $r^{3}(\cos\theta + i\sin\theta)^{3} = 8(\cos\frac{\pi}{2} + i\sin\frac{\pi}{2})$
 $r^{3}(\cos\theta + i\sin\theta) = 8(\cos\frac{\pi}{2} + i\sin\frac{\pi}{2})$
 $3\theta = \frac{\pi}{2} + 2\pi R$
 $r^{3} = 8r$, $r = 2$
 $\theta = \frac{\pi}{6} + \frac{2\pi}{3}\pi R$
 $r^{3} = 8r$, $r = 2$
 $r^{3} = \frac{\pi}{6} + \frac{2\pi}{3}\pi R$
 $r^{3} = 8r$, $r = 2$

(2) $Z = r(\cos\theta + i\sin\theta) = \pi \cdot c$ r > 0, $0 \le \theta < 2\pi \ge 7$ r > 0, $0 \le \theta < 2\pi \ge 7$ r > 0, $0 \le \theta < 2\pi \ge 7$ (1) $E | \text{Pi}_{R}| = 12$ r = 3 $3\theta = \frac{\pi}{2} + 2\pi R + 2\pi R$ $\theta = \frac{\pi}{6} + \frac{2}{3}\pi R$ $\pi + 4\pi R$ $\pi + 2\pi R$ $\pi + 4\pi R$ $\pi + 2\pi R$ $\pi + 4\pi R$ $\pi + 2\pi R$ $\pi + 4\pi R$ $\pi + 2\pi R$ $0 = \frac{1}{3} \cdot 0 + \frac{3}{2} \cdot \frac{3}{2$

数樂 http://www.mathtext.info/