xy 平面上を動く点 P(x,y) の時刻 t における座標を $x=5\cos t,\,y=4\sin t$ とし、この点の速度 $\overrightarrow{v}=\left(\frac{dx}{dt},\frac{dy}{dt}\right)$ とする。ただし、角の単位はラジアンとする。2 点 A(3,0),B(-3,0) をとる。このとき、次の各間に答えよ。

- (1) $x = 5\cos t$, $y = 4\sin t$ から, t を消去して, $x \ge y$ の関係式を求めよ。
- (2) 速度 $\stackrel{\rightarrow}{v}$ を求めよ。
- (3) \overrightarrow{PA} と \overrightarrow{v} の内積 $\overrightarrow{PA} \cdot \overrightarrow{v}$ および \overrightarrow{PB} と \overrightarrow{v} の内積 $\overrightarrow{PB} \cdot \overrightarrow{v}$ を t を用いて表せ。
- (4) ベクトル \overrightarrow{PA} , \overrightarrow{PB} の大きさをそれぞれ $|\overrightarrow{PA}|$, $|\overrightarrow{PB}|$ とするとき, 等式 $|\overrightarrow{PA}| = 5 3\cos t$, $|\overrightarrow{PB}| = 5 + 3\cos t$ が成り立つことを証明せよ。
- (5) \angle APB の 2 等分線の方向ベクトルは、 \overrightarrow{v} に垂直であることを証明せよ。

的 aget =
$$\frac{x}{5}$$
 six $t = \frac{y}{5}$ coext+six $t = 179$
 $\left(\frac{x}{5}\right)^2 + \left(\frac{y}{4}\right)^2 = 1$ $\frac{x^2}{55} + \frac{y^2}{16} = 1$

$$\frac{dx}{dt} = -6 \text{sint} \quad \frac{dy}{dt} = 4 \text{ wost} \quad \vec{v} = (-4 \text{ mit}, 4 \text{ cost})$$

$$\overrightarrow{PA} = (3-1, -4) \quad \overrightarrow{PB} = (-3-1, -4)$$

$$\overrightarrow{PA} \cdot \overrightarrow{U} = (-15 \text{ suit} + 5 \times \text{ suit} - 4 \text{ y cost} = +15 \text{ suit} + 25 \text{ suit cost} - 16 \text{ suit cost} = 9 \text{ suit cost} + 15 \text{ suit}$$

$$\overrightarrow{PB} \cdot \overrightarrow{U} = 15 \text{ suit} + 5 \times \text{ suit} - 4 \text{ y cost} = 15 \text{ suit} + 25 \text{ suit} + 25 \text{ suit} + 26 \text{ suit cost} + 16 \text{ suit} + 15 \text{ suit}$$

$$\overrightarrow{PA} \cdot \overrightarrow{U} = 3 \text{ suit} (3 \text{ cost} - 5) \quad \overrightarrow{PB} \cdot \overrightarrow{U} = 3 \text{ suit} (3 \text{ cost} + 5) = 16 \text{ suit}$$

(4)
$$\overrightarrow{PA} = (3-(1-y))^{2}y$$
 $(\overrightarrow{PA}) = \sqrt{(3-x)^{2}+(-y)^{2}} = \sqrt{(3-5\cos t)^{2}+(-x\sin t)^{2}}$
 $(3-x)^{2}+(-y)^{2}y$ $(3-x)^{2}+(-y)^{2}=\sqrt{(3-5\cos t)^{2}+(-x\sin t)^{2}}$
 $(3-x)^{2}+(-x\sin t)^{2}=\sqrt{(3-5\cos t)^{2}+(-x\sin t)^{2}}$
 $(3-x)^{2}+(-x\sin t)^{2}=\sqrt{(3-5\cos t)^{2}+(-x\sin t)^{2}}$
 $= (3-x)^{2}+(-y)^{2}+(-y)^{2}=\sqrt{(3-5\cos t)^{2}+(-x\sin t)^{2}}$
 $= (3-x)^{2}+(-y)^{2}+(-y)^{2}=\sqrt{(3-5\cos t)^{2}+(-x\sin t)^{2}}$
 $= (3-x)^{2}+(-y)^{2}+(-y)^{2}=\sqrt{(3-5\cos t)^{2}+(-x\sin t)^{2}}$
 $= (3-3\cos t)^{2}+(-y)^{2}=\sqrt{(3-5\cos t)^{2}+(-x\sin t)^{2}}$
 $= (3-3\cos t)^{2}+(-x\sin t)^{2}$
 $= (3-3\cos t)^{2}+(-x\sin t)^{2}+(-x\sin t)^{2}$
 $= (3-3\cos t)^{2}+(-x\sin t)$

(5)
$$\angle APB$$
 の 2 等分部の方向 ベクトルの | つとして $\overrightarrow{U} = \frac{\overrightarrow{PA}}{PA} + \frac{\overrightarrow{PB}}{PB} = \frac{\overrightarrow{PA}}{5-3 \text{ cust}} + \frac{\overrightarrow{PB} \mathbf{1}}{5+3 \text{ cust}}$ 数樂 http://www.mathtext.info/ $\overrightarrow{U} \cdot \overrightarrow{U} = \frac{\overrightarrow{PA} \cdot \overrightarrow{U}}{5-3 \text{ cust}} + \frac{\overrightarrow{PB} \cdot \overrightarrow{U}}{5+3 \text{ cust}} + \frac{3 \text{ cust}}{5+3 \text{ cust}} + \frac{3 \text{ cust}}{5+3 \text{ cust}} = -3 \text{ cust} + 3 \text{ cust}$