F5our

O を原点とする座標平面上の 2 点 $P(2\cos\theta,\ 2\sin\theta),\ Q(2\cos\theta+\cos7\theta,\ 2\sin\theta+\sin7\theta)$ を考える。ただし、 $\frac{\pi}{8} \le \theta \le \frac{\pi}{4}$ とする。

(1)
$$OP =$$
 $\vec{7}$, $PQ =$ $\vec{1}$ である。また $OQ^2 =$ $\vec{7}$ $+$ \vec{I} $(\cos 7\theta \cos \theta + \sin 7\theta + \sin 7\theta$

である。

よって、 $\frac{\pi}{8} \le \theta \le \frac{\pi}{4}$ の範囲で、OQ は $\theta = \frac{\pi}{2}$ のとき最大値 $\sqrt{2}$ をとる。

= 4 as20+4 coeo coe70+ co2270+4 sic0+4 sic0+ 4 sic70+ sic70

至至日至安却 6日月前日日 是九至6日至是九

このとは一1 met の cox 60 me 0 cox 日= な a と記録大便 0

Ctfs

(2) 3 点 O, P, Qが一直線上にあるような θ の値を求めよう。

直線OPを表す方程式は ク である。 ク に当てはまるものを、次の(0)~(3)の うちから一つ選べ。

- $(0) (\cos \theta)x + (\sin \theta)y = 0$
- $\begin{array}{l}
 \text{(1)} & (\sin \theta)x + (\cos \theta)y = 0 \\
 \text{(3)} & (\sin \theta)x (\cos \theta)y = 0
 \end{array}$
- $(2) (\cos \theta)x (\sin \theta)y = 0$

このことにより, $\frac{\pi}{8} \le \theta \le \frac{\pi}{4}$ の範囲で, 3 点 O, P, Q が一直線上にあるのは $\theta =$ $\frac{\pi}{f}$ のときであることがわかる。

(3) $\angle OQP$ が直角となるのは $OQ = \sqrt{ \ \ \ \ \ \ \ }$ のときである。したがって、 $\frac{\pi}{8}\theta \leq \frac{\pi}{4}$ の範

[15センター試験]

: sit cos70 = si 70 cos0 31 tant = tan 70 i. 0 = 70 ... 0

3)

三彩。定理对 09: 14-1:13 ... 3 s he O Jy

