こんにちは。相城です。今回は余弦定理ができるまで。ということでお話ししていきます。
余弦定理

△ABCのBC
が成り立つ。これを余弦定理という。
どうやって余弦定理ができるの?
余弦定理は中学3年生で習った三平方の定理の拡張版だと思ってください。
三平方の定理は
のときだけでしたが, 余弦定理では
は![]()
まで拡張できます。
次の余弦定理①を下の図を使って証明しましょう。ただし,
は鋭角とします。

![]()
△ABCで,
辺ABの交点をDとする。このとき, 右の図のように, AD
が鈍角の場合

頂点BからCAの延長線上に垂線を下ろして, 交点をDとする。このとき, 図のように,
より, AD
, BD
となります。
ここで,
![]()
である。これを適用し, △BCDで三平方の定理を用いると,
数樂管理人のブログ 
