TikZ:中学数学:一次関数:R5年度(2024)徳島県第3回基礎学力テスト大問3

こんにちは。令和6年1月10日に実施されたものです。設定自体は平易だと思います。早速やってみましょう。

徳島県第3回基礎学力テスト

【問題】まおさんは, 家を午前10時に出発し, 歩いて図書館に行った。図書館にしばらくいた後, 図書館を出て, 途中のケーキ屋で買い物をして帰宅した。図1は, まおさんが歩いているときの速さは分速75mで一定とし, 家を出てからx分後に, 家からymの地点にいるとして, xyの関係をグラフに表したものである。
次の(1)~(3)に答えなさい。
図1

Rendered by QuickLaTeX.com


(1) 次のア~ウにあてはまる数を答えなさい。また, エにあてはまる時刻は何時何分か答えなさい。
・まおさんは図書館に【ア】分間滞在した。
・まおさんは図書館を出て, ケーキ屋まで【イ】分間歩いた。
・まおさんはケーキ屋に【ウ】分間滞在した。
・まおさんが帰宅したのは【エ】である。
(2) まおさんが図書館を出て, ケーキ屋に着くまでの様子を表す部分のグラフについて, x, yの関係を式に表しなさい。ただし, 変域は求めなくてよい。
(3) まおさんの姉は, 午前10時50分にまおさんの家を出発し, 分速85mの速さで歩いて図書館に向かった。すると, 図書館からケーキ屋に向かっているまおさんと出会った。2人が出会った時刻は何時何分か。また, 家から何mの地点で出会ったか求めなさい。ただし, まおさんの姉の歩く速さは一定であるとする。
【R5徳島県第3回基礎学力テスト】

解答・解説

【解答解説】
(1)
・滞在したのは62-20=42分間。42\cdots
・図書館とケーキ屋の距離は1500-900=600\text{m}, それを分速75mで歩いたので,
600\div75=8分間歩いた。8\cdots
・イよりケーキ屋に着いたのは出発してから62+8=70分後。
よって, 滞在したのは86-70=16分間。16\cdots
900\div75=12なので家に帰ってきたのは, 出発してから86+12=98分後。
午前\text{10}+98=午前11時38分\cdots
(2)
求める直線の式は下の図の直線ABである。

Rendered by QuickLaTeX.com


1分あたりに75m進み, 右下がりの直線なので, 傾きは-75である。
よって, 求める直線は, y=-75x+b\cdots\maru1として, 点(62, 1500)を通る。\maru1x=62, y=1500を代入してbを求めると, b=6150。したがって求める直線の式は,
y=-75x+6150\cdots(答)
(3)

Rendered by QuickLaTeX.com


上の図の直線\textcolor{red}{\ell}(赤直線)は, 姉の様子を表す。直線\textcolor{red}{\ell}は傾きが85で点( 50, 0 )を通るので, それを求めると,
\ell : y=85x-4250\cdots\maru1
これと(2)で求めたy=-75x+6150との交点を求めると,
85x-4250=-75x+6150
160x=10400
x=65
x=65\maru1に代入すると,
y=85\times65-4250=1275\, (\text{m})
午前\text{10}+65=午前11時5分,
よって,
出会った時刻は, 午前11時5分
家から1275\text{m}の地点\cdots(答)
【別解(略解)】(3)は式を求めるのが面倒なら, 算数でやっても求められる。

コメントを残す

メールアドレスが公開されることはありません。 が付いている欄は必須項目です

日本語が含まれない投稿は無視されますのでご注意ください。(スパム対策)