こんにちは。三平方の定理(ピタゴラスの定理)が成り立つことを相似を用いて証明しよう。
三平方の定理(ピタゴラスの定理)は以下のような定理です。
三平方の定理(ピタゴラスの定理)
直角三角形の斜辺を, 直角を挟む2辺を
,
とすると,
が成り立ちます。この関係を三平方の定理(ピタゴラスの定理)といいます。
三平方の定理の証明(相似編)
相似を用いてこれを証明していきましょう。
以下のように直角三角形ABCの頂点Cから辺ABに垂線を下ろし, 交点をDとします。AB, BC
, CA
, BD
とします。
このとき, △ABC∽△CBD(2組の角がそれぞれ等しい)から次の辺の比が言えます。
AB : CB


これより

また, △ABC∽△ACD(2組の角がそれぞれ等しい)から次の辺の比が言えます。
AB : AC

AD


これより




が得られる。(終わり)
三平方の定理の証明(面積編)
面積の関係を用いて証明していきましょう。
以下のように斜辺が, 直角を挟む2辺が
,
の合同な直角三角形を4枚用意して, 図のように並べて, 1辺が
の正方形ABCDをつくりました。
このとき, 外側の正方形の1辺であるABはAB




この正方形ABCDの面積

1辺


また, この正方形ABCDの面積







が成り立つ。(終わり)