こんにちは。相城です。今回は微分すると接線の傾きが求まることを書いておきます。
下の図は関数のグラフである。微分したものがなぜ接線の傾きになるのか考えてみましょう。ここでは, グラフ上のA( 1, 0 )における接線の傾きを求めてみます。
まず点Aを通る直線を考えるとき, 直線AC, ABのように点Aとは異なる点を通る直線が考えられます。ここで点A以外のグラフ上の点をC(∵は点Aからのの増加量)とすると, 2点ACを通る直線の傾きは中学生の公式を使って, 次のように与えられます。
となります。
ここで, 接線とは接することであるから, この点Aからの増加量は0に近くなり, 点Aではまさに0(厳密には0ではないが, 限りなく0である)になって, 接することになります。ですからでとなり, 接線の傾きは2になることが分かります。これが関数のにおける微分係数(接線の傾き)です。このように, グラフを細かく見ていくことができます。
一般に関数のにおける微分係数は次のように定義されます。
微分係数はの値1つ1つに対応しますが, この1つ1つの対応を関数としてみたとき, 導関数(微分)は次のように定義されます。
実際, 上のの微分を導関数の定義のでやってみると,
微分をご存知の方は, なら, となることは瞬時にお分かりだと思います。したがって, における微分係数(接線の傾き)は, となり, はじめに計算したものと一致します。このように, 導関数を求め(微分し), 接点の座標を代入することで接線の傾きが得られます。
微分することで, 瞬間の変化の割合(傾き)が分かります。これによって, グラフを細かく見ていくことが可能です。また, 変化の割合が一定でないことは, そのグラフは曲線を描くことは言うまでもありません。
微分係数ではの値に応じて1つ1つ求めなければなりませんが, 今後微分係数の計算は導関数を求めて(微分して), それに必要なの値を代入することで, 所定の微分係数は得られるようになります。